Challenges and Solutions of Distributed Systems Composition

Tsui, Tsun-Te / Dr. Jeng, Albert B.
Telecom Technology Center
Outline

- Introduction
- Distributed Systems Overview
- How CC Address the Composition Problem
- Challenges in Distributed Systems Composition
- Recommended Solution for Distributed Systems Composition
- Conclusion
Introduction

- A Distributed System
 - consists of cross-platform resources which may lead to great difficulties for providing trustworthy security assurance
 - composition of large-scale security mechanisms into a coherent system-wide security assurance is a major challenge

- In CC v3.1
 - class ACO on composition was developed to address the issue
 - fails to address the composition problem including technical criteria for judging the trustworthiness of interconnected information system or distributed systems

- Recommendation on how CC should address distributed systems composition problem based on the most recent research results
Distributed Systems Overview
Distributed Systems

- An integration of system services, presenting a **transparent** view of a multiple computer system with **distributed resources and controls**

- A collection of independent computers that appear to the users of the system as a single computer

Examples
- Massively multiplayer online games and virtual reality communities
- A large bank with hundreds of branch offices all over the world
- DNS, Search engine (e.g. Google), Web mail (e.g. hotmail)
Distributed System Design Issues

- A distributed system consists of **concurrent processes** accessing **distributed resources** through message passing in a network environment that may be unreliable and contain un-trusted components

- **Design issues**
 - Setup model and identify components
 - Arrange the interaction among components
 - Assure components communication
 - Protect components and system security

- A recent hot paradigm is **Cloud Computing**
Principal Characteristics of Cloud Computing

- Abstraction of Infrastructure
- Resource Democratization
- Services Oriented Architecture
- Elasticity/Dynamism of Resources
- Utility model of Consumption & Allocation

Cloud Service Delivery Models

- **SaaS – Cloud Software as a Service**
 - Use provider’s applications over a network

- **PaaS – Cloud Platform as a Service**
 - Deploy customer-created applications to a cloud

- **IaaS – Cloud Infrastructure as a Service**
 - Rent processing, storage, network capacity, and other fundamental computing resources
Distributed Systems Security

- Hosts
 - Manageability
 - Metering
 - Security

- Infrastructure
 - Physical
 - Middleware

- Applications

- Services
Cloud Computing Security Issues

- Some key issues:
 - Trust, Multi-tenancy, Encryption, Compliance

- Cloud computing contains massively complex systems can be reduced to simple primitives that are replicated thousands of times and common functional units

- Cloud computing security is a tractable problem
 - There are both advantages and challenges

General Cloud Computing Security Challenges

- Trusting vendor’s security model
- Customer inability to respond to audit findings
- Obtaining support for investigations
- Indirect administrator accountability
- Proprietary implementations can’t be examined
- Loss of physical control

How CC Address the Composition Problem

TOE A

TOE X

TOE B

TOE N
CC Composition Scenario

- Composition scenario
 - Assume Component X has been evaluated
 - Assume Component A shall be evaluated
 - Making use of the evaluation of X
 - What can be reused and how?
 - What needs to be re-done?

- The CC Composition Class ACO provides a solution to the practical issues of leveraging off the results of existing CC evaluation
 - Example: A TOE composed of Java applet and smart card controller which have been evaluated separately before
CC Composite Evaluation

- **Composite Evaluation** refers to the evaluation of a system or product that is composed of components—some of which have already been evaluated.

- Reduced risk of incompatibility problems in a very late evaluation stage.

- ST, ETR-Lite, Certification Report, and evaluation evidence are indispensable in composite evaluations.

- Composite evaluations are of significant interest in the smartcard.
Composite Evaluation in CC v2.x

- Supporting document
 - [CCDB-2007-09-01] Composite product evaluation for Smartcards and similar devices v1–0 Mandatory
 - Additional security assurance families: ASE_COMP, ACM_COMP, ADO_COMP, ADV_COMP, ATÉ_COMP,AVA_COMP
 - [CCDB-2007-09-02] ETR–template lite for composition v1–0 Guidance

- Composition guidelines mainly focus on smart card (IC + COS + Application)
Composite Evaluation in CC v3.1

ACO: composition class

- Composition rationale (ACO_COR)
- Development evidence (ACO_DEV)
- Reliance of dependent component (ACO_REL)
- Composed TOE testing (ACO_CTT)
- Composition vulnerability analysis (ACO_VUL)
Challenges in Distributed Systems Composition
The Generic Composition Problems

- What happens when putting together the results of two individual component TOEs for operational use, with no further development?

- How to determine assurance of the composed TOE?

- How can a composed product be evaluated?

- How much can be reused from the evaluation of individual components and what needs to be considered when reusing evaluation results?
Challenges in Distributed Systems Composite Evaluation (1/2)

- CC could be used for distributed systems certification/evaluation but it is not readily usable

- Evaluation for system/distributed system lacks
 - Experience in developing system Protection Profiles and Security Targets (except smart card)
 - Functional requirements for non-IT security controls (e.g., physical security, security administration, personnel security, disaster recovery)
 - Criteria to address cross domain issues
 - Criteria to address distributed resources and controls under various administrations and policies
 - Operational maintenance measures
Challenges in Distributed Systems
Composite Evaluation (2/2)

- CC doesn’t provide evidence that risk analysis was adequate

- CC and CEM need new/different assurance requirements and lack integration information of components
 - Systems need to be evaluated in their environment taking into account technical and management controls

- The IT security community does not have agreed approach/methodology to evaluate systems composed of evaluated products

- CC evaluation laboratories not accredited to perform system evaluation
Recommended Solution for Distributed Systems Composition
Recommended Solution for Distributed Systems Composition

- Evaluation for Individual components/products
- Learn from early/experimental use of “system level” PPs & use of the CC for system evaluation (e.g., UK, US DoD)
- Turn to system Certification and Accreditation (SAOS, NIST SP 800 series)
System Certification & Accreditation

- **System Security Certification**
 - a process that ensures the controls are implemented correctly, operating as intended, and producing the desired outcome with respect to meeting the security requirements for the system

- **System Security Accreditation**
 - the official management decision given by a senior agency official to authorize operation of an information system and to explicitly accept the risk to agency operations, agency assets, or individuals based on the implementation of an agreed-upon set of security controls

- C&A provides assurances that the system residual risk reduced by the IT and non-IT security controls are acceptable to the accreditation official
 - Configuration Management
 - Guidance documentation
 - Life cycle controls
 - Maintenance
Future CC for Distributed Systems Evaluation (1/2)

- Reports/evidence from CC evaluated products used in systems integration could provide useful information for system security certification – if better tailored for that function
 - Current CC evaluation reports/evidence not intended for this purpose

- Develop CC for systems
 - System PP/ST development
 - System CEM development
Future CC for Distributed Systems Evaluation (2/2)

- Expansion of CC to include:
 - Cryptography (NIST FIPS 140)
 - Non-IT functional requirements of the operational environment (e.g., physical, administrative, procedural, personnel) as found in ISO 17799 and other control documents
 - New technical controls + assurance requirements / packages

- Expansion of CEM to include assessment methods for the non-IT functional requirements of the operational environment

- Accreditation of labs to perform limited CC-based system evaluations (e.g., smart card)
Conclusion

- Anticipation for future CC
 - Output from CC v4 working group: Implementation Assurance
 - New approach aimed at large software products
 - Focus on smart card composite evaluations
 - Develop an upgraded CC for system / distributed system composite evaluation

- CC Labs only perform limited CC-based system evaluations for the composed product evaluation

- The general system or distributed system composite evaluation is a significant research problem and beyond the reach of CC without a major overhaul on
Thank you

Tsui, Tsun–Te
tttsui@ttc.org.tw

Dr. Jeng, Albert
albertjeng@hotmail.com

mandag 31. august 2009