ICCC 2012 - Experience
Certification of a loader integrated in a secure microcontroller: strategic stakes

Christiane DROULERS
STMicroelectronics
Secure MCU Division
Agenda

Presentation

• A new generation of Secure MCUs
• Impacts on the CC evaluation approach
• STMicroelectronics approach for the ST33 loader certification
• Conclusion
A new generation of Secure Microcontrollers
A new generation of Secure MCUs: purpose

• The trend is to offer more and more applications on a single chip, increasing Non Volatile Memory size
 • High-end SIM
 • Secure element for NFC (Near Field Communication) products

• Smartcard & Similar Devices vendors (our direct customers) need
 • More supply chain flexibility
 • Shortened time-to-market because of a very dynamic and competitive market

• A high level of security is needed
 • Assets more attractive to attackers, growing risk of exposure to attacks
 • Evolving state-of-the-art of attacks
 • Potential very hostile operational environment
 • Possible co-existence of many different applications on the same chip
A new generation of Secure MCUs: solution

• The new Secure Flash Microcontrollers provide
 • Very dense Non Volative Memory (NVM) capacity up to 1 Mbyte and more
 • A different product lifecycle, allowing more flexibility and a shortened time-to-market for new OSs & applications

• The Common Criteria certification guarantees
 • An evaluation against state-of-the-art attacks
 • High attack potential (AVAN.5) required by the Protection Profile
 • JIL Attack Methods document and Application of attack potential document
 • An evaluation with high development standards (EAL4/5)

• There is only one applicable Protection Profile
 • BSI-PP-0035 “Security IC Platform Protection Profile”
 • Mentions this new kind of MCU (lifecycle) without adapting the Security Problem Definition to late code loading
 • Cannot include specific SFRs because it requires strict conformance, and the loader is an optional element
Impacts on the CC evaluation approach
BSI-PP-0035 defines a generic TOE lifecycle:

1. **Phase 1**: Security IC Software Development
 - Security IC Software Developer

2. **Phase 2**: Security IC Development
 - TOE manufacturer

3. **Phase 3**: Security IC Manufacturing
 - TOE manufacturer

4. **Phase 4**: Security IC Packaging
 - Card manufacturer

5. **Phase 5**: Composite Product Integration
 - End user

6. **Phase 6**: Personalisation

7. **Phase 7**: Operational Usage
Impacts on evaluation: lifecycle (2/2)

- Delivery of the Security IC Software may take place at different steps

Phase 1
Security IC Software Development
If implemented in ROM and EEPROM

Phase 2
Security IC Development

Phase 3
Security IC Manufacturing

Phase 4
Security IC Packaging

Phase 5
Composite Product Integration

Phase 6
Personalisation

Phase 7
Operational Usage

If loaded into the NVM

After TOE Delivery, the TOE is in an operational environment, not covered by ALC-DVS, but by AGD

ICCC 2012: Certification of a loader in a Secure MCU 19/09/2012
Impacts on the evaluation: How?

• A loader integrated in the Secure MCU must be part of the TOE

• Either without impacting the Security Problem Definition => loader just declared
 • The SFRs from the Protection Profile will apply to it, without really addressing it
 • It will be added in the ADV, ATE & AGD documentation
 • It will be assessed against AVA_VAN.5

• Or impacting the Security Problem Definition => functional augmentation
 • Specific threats or security policies are defined
 • Resulting in specific SFRs, then verified in depth during the vulnerability analysis

• The second strategy was chosen by STMicroelectronics (ST) for its ST33 family
STMicroelectronics approach for the ST33 loader certification
ST approach: Loader security features

<table>
<thead>
<tr>
<th>Security features</th>
<th>Purpose</th>
<th>Main SFRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication of loading authority</td>
<td>Avoid abuse of functionality in protected production environment</td>
<td>Security attribute based access control (FDP_ACF.1)</td>
</tr>
<tr>
<td>Loading of encrypted code</td>
<td>Ensure code confidentiality during transport and loading</td>
<td>Import of user data without security attributes (FDP_ITC.1)</td>
</tr>
<tr>
<td>Code integrity check during loading</td>
<td>Ensure code integrity</td>
<td></td>
</tr>
<tr>
<td>Loading mechanism not usable after loading (before Phase 7)</td>
<td>Avoid abuse of functionality in end-user environment</td>
<td>Limited capabilities (FMT_LIM.1) Limited availability (FMT_LIM.2) Guidance</td>
</tr>
</tbody>
</table>
ST approach: Impact on the Security Target

• The Loader is explicitly part of the TOE

• Functional augmentations related to the Loader:
 • One OSP / one Objective “Controlled loading of the Security IC Embedded Software”
 • 8 SFRs (Security Functional Requirements):
 • 6 defined in CC part 2
 • 2 defined in the PP (CC part 2 extended)
 • 2 SFPs (Security Function Policies) linked to the SFRs
ST approach: Impacts on the evaluation

• Impact on CC classes / families:
 • ASE: Functional augmentations to the Security Target
 • ADV: Loader functionalities and design detailed in all deliveries (ADV_ARC, ADV_FSP, ADV_TDS, ADV_IMP)
 • ATE: Loader functionalities detailed in all deliveries + related evaluator functional testing (ATE_IND)
 • ALC: Adapted delivery and new lifecycle for loader (ALC_DEL). Loader integrated into all other ALC families.
 • AGD: Specific User Manual in AGD_PRE, Installation Manual in AGD_OPE
 • AVA_VAN: Vulnerability analysis including loader and related to specific SFRs claimed in the Security Target @ AVA_VAN.5 (code review, penetration testing, fault injection, …)

• Impact on evaluation workload:
 • Reasonable increase, proportional to the loader functionalities
ST approach: Results / benefits

- First certificate in 2010, last one in 2011 (ANSSI-CC-2011/07), maintained and in surveillance in 2012

- Customer confidence: our customers use ST’s loader, including some who had their own loader

- Customer development savings: no need to develop their own loader

- Customer composite evaluation savings and simplification: the loader is fully evaluated during the platform certification

- Customer supply chain rationalization:
 - Allows versatile code loading strategy, from Phase 3 up to Phase 6
 - Better protection of customer code during transportation and code loading
Conclusion
Conclusion

- The development of loaders is a recent evolution in the Smartcard and Similar Devices domain

- The BSI-0035-PP cannot be fully adapted to this new optional element of the TOE (due to strict conformance)

- The definition of associated constraints and/or related functional augmentations to the Security Target could be a future project for the ISCI working group 1 (supporting document)
• Questions and answers

• Duly limited by confidentiality constraints
Thank you for your attention